A NEW TOTAL SYNTHESIS OF (±) STEGANONE

Eric BROWN, Robert DHAL and Jean-Pierre ROBIN

(Laboratoire de Synthèse Organique, ERA n° 07.0394, Faculté des Sciences, Route de Laval, B.P. 535, 72017 LE MANS, FRANCE)

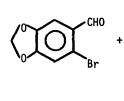
As part of a program pertaining to the total synthesis of antileukemic bis-benzocyclooctadiene lignans, we have shown the feasibility of preparing highly substituted diphenyl compounds by means of an ULLMANN reaction between two hindered halides (1). We have also shown that inter- and intramolecular α -hydroxyalkylation of γ -butyrolactones could be carried out in excellent **yied** ds using lithium hexamethyl disilylamide (LHDS) as a basic agent (2,3). We have used both these reactions in the following total synthesis of (±) steganone <u>14</u>.

An ULLMANN reaction between bromo-6 piperonal <u>1</u> and the aromatic iodide <u>2</u> (1) at 225°C for 35 mn, afforded the diphenyl <u>3</u>, m.p. 154-165°C in 59 % yield. Treatment of the latter with LHDS (3.5 equ.) in benzene/hexane 4/1 at 15°C gave an amorphous solid in quantitative yield. Column chromatography of this solid yielded two stereoisomeric bis-benzocyclooctadienols <u>4</u>, m.p. 218-225.5°C (CHCl₃/Et₂0) (head fraction) and <u>5</u>, m.p. 196-198.5°C (CHCl₃/Et₂0), whose stereochemistry was not elucidated. JONES's oxidation of the alcohol <u>4</u> afforded the enol <u>6</u>, m.p. 220°C (positive FeCl₃ test), whereas the alcohol <u>5</u>, under the same conditions, presumably gave an unstable β -keto lactone <u>7</u>, which spontaneously isomerized into the enol <u>6</u>. The crude mixture of the alcohols (<u>4 + 5</u>) was oxidized (JONES's reagent) to give a mixture of <u>6</u> and <u>7</u> in quantitative yield (crude). Crystallization of this mixture from methanol afforded the enol <u>6</u> in 52 % yield. Alternatively, column chromatography on silica of the crude mixture of (<u>6 + 7</u>), followed by spontaneous isomerisation at room temperature, gave the enol <u>6</u> in 65 % yield.

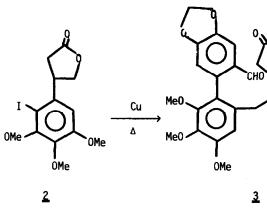
On treatment with aqueous $Ba(OH)_2$, the crude mixture of <u>6</u> and <u>7</u> underwent decarbo-

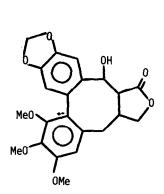
733

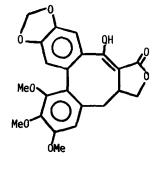
xylation to give a mixture of β -hydroxymethyl ketones $\underline{8}$ and $\underline{9}$ in 80 % yield (not isolated; two spots in TLC). The same mixture of isomers $\underline{8}$ and $\underline{9}$ was also obtained by decarboxylation of the purified enol $\underline{6}$. The crude mixture of $\underline{8}$ and $\underline{9}$ was oxidized with JONES's reagent, and the resulting mixture of acids $\underline{10}$ and $\underline{11}$ was esterified with BF₃/MeOH, to give the γ -ketoesters $\underline{12}$ and $\underline{13}$ which could be separated and purified by column chromatography with a total yield of 41 % from the diphenyl $\underline{3}$. The head ester $\underline{12}$ had m.p. $130-134^{\circ}$ C (CHCl₃/Et₂0), whereas its isomer $\underline{13}$ had m.p. $131-134.5^{\circ}$ C (CHCl₃/Et₂0). Both esters were identified by comparison with authentic samples.

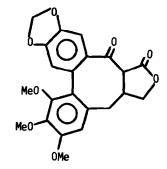

Synthesis of (±) steganone 14.

By carrying out the afore-mentioned reaction sequence on the crude mixture of stereoisomeric alcohols $(\underline{4} + \underline{5})$, without separation or purification of the various intermediates, we obtained the crude mixture of the acids $(\underline{10} + \underline{11})$, which we subsequently treated with 30 **x** aqueous formaldehyde, followed by JONES's oxidation. After removal of any residual acidic material from the reaction product, the latter was heated in refluxing xylene, to afford (\pm) steganone $\underline{14}$ in 20.7 **x** yield (from the purified diphenyl $\underline{3}$), m.p. 231-233°C after 3 recrystallizations from EtOH/CH₂Cl₂ (6).

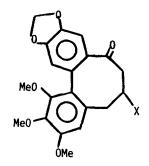

(±) Steganone <u>14</u> was thus obtained with an overall yield of 7 % starting from trimethoxybenzaldehyde. On the other hand, esterification of the crude mixture of acids <u>10</u> + <u>11</u>, followed by chromatography, gave the purified and separated esters <u>12</u> and <u>13</u> with a total overall yield of <u>ca</u>. 14.5 %. Since both these esters can be transformed into (±) steganone <u>14</u> in 75 % yield (with recycling of the unreacted starting material) (4,5), our present total synthe sis of (±) steganone <u>14</u>, <u>via</u> the esters (<u>12</u> + <u>13</u>), has an overall yield of 11 % starting from the commercially available trimethoxybenzaldehyde (7).

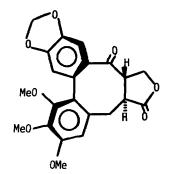

Conclusion.


We have developed a new total synthesis of (\pm) steganone <u>14</u> in eleven steps from bromo-6 piperonal and trimethoxybenzaldehyde. The overall yield of our synthesis (<u>ca</u>. 11 %) is comparable to that reported by KENDE (<u>ca</u>. 10 %) (4) and ZIEGLER (<u>ca</u>. 9 %) (8), but is



1





<u>6</u>

Ζ

 $\underline{8}, \underline{9}$ R = CH₂OH <u>10, 11</u> R = CO₂H <u>12, 13</u> R = CO₂Me

<u>14</u>

twice as low as that observed by RAPHAEL (<u>ca</u>. 23%%) (5). However, it is worth mentioning that our overall yield was calculated starting from trimethoxybenzaldehyde itself, and not from some deriving intermediate, contrary to RAPHAEL, ZIEGLER or KENDE's yields. Nevertheless, RAPHAEL's total synthesis of (\pm) steganone <u>14</u>, which was the first one to be published, appears to be the most efficient one so far.

Acknowledgements.

We are grateful to Prof. R.A. RAPHAEL, Prof. A.S. KENDE and Prof. F.E. ZIEGLER for kindly providing us with valuable information. A generous gift of esters <u>12</u> and <u>13</u> from Prof. R.A. RAPHAEL is also gratefully acknowledged.

References.

- (1) E. BROWN and J.P. ROBIN, Tetrahedron Letters, 1977, p. 2015.
- (2) E. BROWN, J.P. ROBIN and R. DHAL, J. Chem. Soc. Chem. Comm., 1978, p. 556.
- (3) E. BROWN and J.P. ROBIN, Tetrahedron Letters, 1978, p. 3613.
- (4) A.S. KENDE and L.S. LIEBESKIND, J. Amer. Chem. Soc., 1976, 98, 267.
- (5) D. BECKER, L.R. HUGHES and R.A. RAPHAEL, J. Chem. Soc., Perkin I, 1977, p. 1674.
- (6) We used our racemic steganone $\underline{14}$ to prepare the known (4,5) (±) steganol, m.p. $115-118^{\circ}C$ (MeOH) and m.p. $155-157.5^{\circ}C$ (Et₂O), and (±) steganacin, m.p. $222-222.5^{\circ}C$ (EtOH/CH₂Cl₂).
- (7) Satisfactory analytical data were obtained for all the compounds described in this paper.
- (8) F.E. ZIEGLER, K.N. FOWLER and N.D. SINHA, Tetrahedron Letters, 1978, p. 2767.

(Received in UK 7 December 1978)